

EMC TEST REPORT

For

Micro Research Institute Inc.

Qlife Hydrogen Water Generator

Model No.: WPI-8001

Prepared for Micro Research Institute Inc.

Address F2, No.479 Da-De Road, San-Shia District New Taipei

City, Taiwan

Prepared by Mosen Detection Technology Co., Ltd.

Address No.3889, Huang'pu East Road, Huang'pu District,

Guangzhou, China

Tel (+86)20-66623300 Fax (+86)20-82030023Web www.mosen-cert.com

Date of receipt of test sample

Number of tested samples

Serial number

ovember 19 2017 November 23, 2017 Date of Test

Date of Report

EMC TEST REPORT

EN 55014-1: 2006+A1: 2009+A2: 2011

Requirements for household appliances, electric tools and similar apparatus -- Part 1: Emission

EN 55014-2: 2015

Requirements for household appliances, electric tools and similar apparatus -- Part 2: Immunity Product family standard

	Product rammy standard					
Report Reference No:	MOS1711189677E					
Date Of Issue:	November 23, 2017					
Testing Laboratory Name:	Mosen Detection Technology Co., Ltd.					
Address	No.3889, Huang'pu East Road, Huang'pu District, Guangzhou, China					
Testing Location/ Procedure:	Full application of Harmonised standards					
	Partial application of Harmonised standards					
	Other standard testing method \Box					
Applicant's Name:	Micro Research Institute Inc.					
Address	F2, No.479 Da-De Road, San-Shia District New Taipei City, Taiwan					
Test Specification:						
Standard	EN 55014-1: 2006+A1: 2009+A2: 2011 EN 61000-3-2: 2014 EN 61000-3-3: 2013 EN 55014-2: 2015					
TRF Originator:	Mosen Detection Technology Co., Ltd.					
MOSEN DETECTION TECHNO	OLOGY CO., LTD. All rights reserved.					

This publication may be reproduced in whole or in part for non-commercial purposes as long as the MOSEN DETECTION TECHNOLOGY CO., LTD. is acknowledged as copyright owner and source of the material. MOSEN DETECTION TECHNOLOGY CO., LTD. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description:	Qlife Hydrogen Water Generator			
Model/ Type Reference:	WPI-8001			
Result:	Positive	[Mas	[M3]	EN

Compiled by: Supervised by: Approved by:

Happy Wise

Wise Shen/ Technique principal Lydia Lin/ Manager

Happy Liu/ File administrators

EMC -- TEST REPORT

 Test Report No.:
 MOS1711189677E
 November 23, 2017

 Date of issue
 Date of issue

Type / Model	: WPI-8001
EUT	: Qlife Hydrogen Water Generator
Applicant	: Micro Research Institute Inc.
Address	: F2, No.479 Da-De Road, San-Shia District New Taipei
Telephone	City, Taiwan : / wosell wosell wosell wosell
Fax	: /
ManufacturerAddress	: Micro Research Institute Inc. : F2, No.479 Da-De Road, San-Shia District New Taipei City, Taiwan
Telephone	:/
Fax	: /
Factory	: Micro Research Institute Inc.
Address	: 30 Fountain Crescent Inchinnan Business Park Renfrew PA4 9RE UK
Telephone	: Linoseial Moseial Moseial Moseial Moseial
Fax	

Test Result according to the standards on page 7: Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

TABLE OF CONTENT

Test Report Description	Page
1. SUMMARY OF STANDARDS AND RESULTS	
1.1. Description of Standards and Results	6
1.2. Description of Performance Criteria.	
2. GENERAL INFORMATION	
2.1. Description of Device (EUT)	
2.2. Test Facility	
2.3. Statement of the measurement uncertainty	
2.4. Measurement Uncertainty	
3. MEASURING DEVICE AND TEST EQUIPMENT	10
3.1. Conducted Disturbance	10
3.2. Disturbance Power	10
3.3. Radiated Electromagnetic Disturbance	
3.4. Radiated Disturbance (Electric Field)	10
3.5. Harmonic Current	
3.6. Voltage fluctuation and Flicker	<u></u>
3.7. Electrostatic Discharge	
3.8. RF Field Strength Susceptibility	
3.9. Electrical Fast Transient/Burst	11
3.10. Surge	11
3.11. Conducted Susceptibility	11
3.12. Power Frequency Magnetic Field Susceptibility	
3.13. Voltage Dips	
3.14. Voltage Short Interruptions	11
4. POWER LINE CONDUCTED EMISSION MEASUREMENT	12
4.1. Block Diagram of Test Setup	
4.2. Power Line Conducted Emission Limits.	
4.3. EUT Configuration on Test.	
4.4. Operating Condition of EUT.	
4.5. Test Procedure.	13
4.6. Test Results.	
5. CLICKS MEASUREMENT	
5.1. Block Diagram of Test Setup	
5.2. Clicks Measurement Standard and limit	
5.3. EUT Configuration on Test	
5.4. Operating Condition of EUT	
5.5. Test Procedure	
5.6. Test Results.	
6. DISTURBANCE POWER MEASUREMENT	17
6.1. Block Diagram of Test Setup	17
6.2. Test Standard	17
6.2. Test Standard	17
6.4. EUT Configuration on Test	18
6.5. Operating Condition of EUT	
6.6. Test Procedure	18
6.7. Test Results	18
7. HARMONIC CURRENT EMISSION MEASUREMENT	

	<u>Report No.:MOS1711189677E</u>
7.1. Block Diagram of Test Setup	
7.2. Test Standard	
7.3. Operation Condition of EUT	20
8. VOLTAGE FLUCTUATION AND FLICKER MEASU	
8.1. Block Diagram of Test Setup	21
8.2. Test Standard	21
8.3. Operation Condition of EUT	21
9. ELECTROSTATIC DISCHARGE IMMUNITY TEST.	21
9.1. Block Diagram of Test Setup	23
9.3. Severity Levels and Performance Criterion	
9.4. EUT Configuration on Test	23
9.5. Operating Condition of EUT	
9.6. Test Procedure	24
9.7. Test Results	
10. ELECTRICAL FAST TRANSIENT/BURST IMMUNI	TY TEST26
10.1. Block Diagram of Test Setup	27
10.2. Test Standard	27
10.3. Severity Levels and Performance Criterion	(0.55)
10.4. EUT Configuration on Test.	27
10.5. Operating Condition of EUT	
10.6. Test Procedure	
10.7. Test Results	
11. SURGE IMMUNITY TEST	
11.1. Block Diagram of Test Setup	30
11.2. Test Standard	
11.3. Severity Levels and Performance Criterion	30
11.5. Operating Condition of EUT	
11.6. Test Procedure.	
11.7. Test Results	
12. INJECTED CURRENTS SUSCEPTIBILITY TEST	Mosen Mosen Mosen 33
12.1. Block Diagram of Test Setup	
12.2. Test Standard.	
12.3. Severity Levels and Performance Criterion	
12.3. Severity Levels and Performance Criterion	(34)
12.5. Operating Condition of EUT	34
12.6. Test Procedure	
12.7. Test Results	
13. VOLTAGE DIPS AND INTERRUPTIONS TEST	
13.1. Block Diagram of Test Setup	36
13.2. Test Standard	
13.3. Severity Levels and Performance Criterion	
13.4. EUT Configuration on Test	31
13.6. Test Procedure	3 <i>/</i>
13.7. Test Result.	
14. EXTERNAL AND INTERNAL PHOTOS OF THE EU	
TIMMARY OF STANDARDS AND RESULTS	mosell mosell

1.1. Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below.

Description of Test Item		Standard	Limits	Results
Conducted disturbance at mains terminals	EN	55014-1: 2006+A1: 2009+A2: 20	11 (MOSEM)	PASS
Clicks	EN	55014-1: 2006+A1: 2009+A2: 20	11	PASS
Disturbance Power	EN	55014-1: 2006+A1: 2009+A2: 20	11	PASS
Radiated disturbance		EN 55022: 2010	А	N/A
Harmonic current emissions	[Hz	EN 61000-3-2: 2014	Class A	PASS
Voltage fluctuations & flicker		EN 61000-3-3: 2013		PASS
,	IMM	UNITY (EN 55014-2: 2015)	1	
Description of Test Item		Basic Standard	Performance Criteria	Results
Electrostatic discharge (ESD)		EN 61000-4-2: 2009	В	PASS
Radio-frequency, Continuous radiated disturbanc	e ose	EN 61000-4-3: 2006+A2: 2010	A A	N/A
Electrical fast transient (EFT)		EN 61000-4-4: 2012	В	PASS
Surge (Input a.c. power ports))	EN 61000-4-5: 2014	В	PASS
Radio-frequency, Continuous conducted disturban	ice	EN 61000-4-6: 2014	Amosen	PASS
Power frequency magnetic field	d	EN 61000-4-8: 2010	Α	N/A
Voltage dips, 60% reduction		M3. M3.	C	PASS
Voltage dips, 30% reduction	(m)	EN 61000-4-11: 2004	(MO3 C	PASS
Voltage interruptions			С	PASS

1.2. Description of Performance Criteria

General Performance Criteria

Examples of functions defined by the manufacturer to be evaluated during testing include, but are not limited to, the following:

- essential operational modes and states;
- tests of all peripheral access (hard disks, floppy disks, printers, keyboard, mouse, etc.);
- quality of software execution;
- quality of data display and transmission;
- quality of speech transmission.

1.2.1. Performance criterion A

The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacture when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be deliver from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

1.2.2. Performance criterion B

After the test, the equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacture, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance.

During the test, degradation of performance is allowed. However, no change of operation state or stored data is allowed to persist after the test.

If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be deliver from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

1.2.3. Performance criterion C

Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacture's instructions.

Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be loss.

2. GENERAL INFORMATION

2.1. Description of Device (EUT)

EUT : Qlife Hydrogen Water Generator

Model Number : WPI-8001

EUT Clock Frequency: ≤15MHz

2.2. Test Facility

Site Description

EMC Lab. : CNAS Registration Number. is L4595.

FCC Registration Number. is 899208.

Industry Canada Registration Number. is 9642A-1.

VCCI Registration Number. is C-4260 and R-3804.

ESMD Registration Number. is ARCB0108.

UL Registration Number. is 100571-492.

TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001.

2.3. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

2.4. Measurement Uncertainty

Test Item	Frequency Range	Expanded uncertainty (Ulab)	Expanded uncertainty (Ucispr)
Conducted Emission	(9kHz to 150kHz)	2.63 dB	4.0 dB
Conducted Emission	(150kHz to 30MHz)	2.35 dB	3.6 dB
Power disturbance	(30MHz to 300MHz)	2.90dB	4.5 dB
Electromagnetic Radiated Emission (3-loop)	(9kHz to 30MHz)	3.60 dB	N/A
Radiated Emission	(9kHz to 30MHz)	3.68 dB	N/A
Radiated Emission	(30MHz to 1000MHz)	3.48 dB	5.2 dB
Radiated Emission	(above 1000MHz)	3.90 dB	N/A
Mains Harmonic	Voltage	0.510%	N/A
Voltage Fluctuations & Flicker	Voltage	0.510%	N/A

- (1) Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus.
- (2) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

3. MEASURING DEVICE AND TEST EQUIPMENT

3.1. Conducted Disturbance

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	EMI Test Receiver	ROHDE & SCHWARZ	ESCI	101142	2016/06/18
2	10dB Attenuator	SCHWARZBECK	OSPAM236	9729	2016/06/18
3	Artificial Mains	ROHDE & SCHWARZ	ENV216	101288	2016/06/18
4	EMI Test Software	AUDIX	E3	N/A	2016/06/18

3.2. Disturbance Power

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
_1	EMI Test Receiver	ROHDE & SCHWARZ	ESCI	101142	2016/06/18
2	Absorbing clamp	ROHDE & SCHWARZ	MDS 21	4033	2015/10/28
3	EMI Test Software	AUDIX	E3	N/A	2016/06/18

3.3. Radiated Electromagnetic Disturbance

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	EMI Test Receiver	ROHDE & SCHWARZ	ESCI	101142	2016/06/18
2	Triple-loop Antenna	EVERFINE	LLA-2	11050003	2016/06/18
3	EMI Test Software	AUDIX	E3	N/A	2016/06/18

3.4. Radiated Disturbance (Electric Field)

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2016/02/04
2	EMI Test Receiver	ROHDE & SCHWARZ	ESPI WOST	101840	2016/06/18
3	Log per Antenna	SCHWARZBECK	VULB9163	9163-470	2016/06/18
4	EMI Test Software	AUDIX	E3	N/A	2016/06/18
5	Positioning Controller	MF	MF-7082		2016/06/18

3.5. Harmonic Current

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
MOST	Power Analyzer Test System	Woltech of End	PM6000	20000670053	2016/06/18

3.6. Voltage fluctuation and Flicker

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Power Analyzer Test System	Voltech	PM6000	20000670053	2016/06/18

3.7. Electrostatic Discharge

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	ESD Simulator	KIKUSUI	KC001311	KES4021	2015/09/02

3.8. RF Field Strength Susceptibility

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
Most.	SIGNAL GENERATOR	HP Most	8648A	625U00573	2016/06/18
2	Amplifier	AR	500A100	17034	2016/06/18
3	Amplifier	AR	100W/1000M1	17028	2016/06/18
4	Isotropic Field Monitor	AR	FM2000	16829	2016/06/18
5	Isotropic Field Probe	AR	FP2000	16755	2016/06/18
6	Bi-conic Antenna	EMCO	3108	9507-2534	2016/06/18
7	By-log-periodic Antenna	AR	AT1080	16812	2016/06/18
8	EMS Test Software	ROHDE & SCHWARZ	ESK1	N/A	2016/06/18

3.9. Electrical Fast Transient/Burst

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
OSEN 1	Electrical fast transient(EFT)generator	3CTEST	EFT-4021	EC0461044	2016/01/20
2	Coupling Clamp	3CTEST	EFTC	EC0441098	2016/06/18

3.10. Surge

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Surge test system	3CTEST	SG5006G	EC5581070	2016/06/18
2.61	Coupling/decoupling network	3CTEST 1105EN	SGN-5010G	CS5591033	2016/06/18

3.11. Conducted Susceptibility

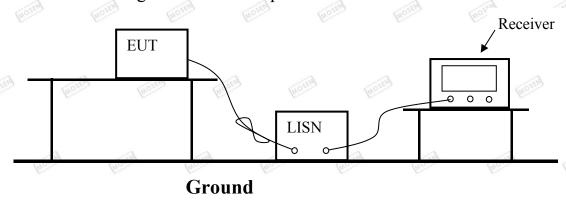
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Simulator	EMTEST	CWS500C	0900-12	2016/06/18
2	CDN	EMTEST	CDN-M2	5100100100	2016/06/18
3	CDN	EMTEST	CDN-M3	0900-11	2016/06/18
4	CDN	EMTEST	CDN-M	0900-12	2016/06/18
5 [11]	Attenuator	EMTEST	ATT6	0010222A	2016/06/18
6	Infuse tongs	EMTEST	EM-Clamp	0513A031201	2016/06/18

3.12. Power Frequency Magnetic Field Susceptibility

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Power frequency mag-field generator	EVERFINE	EMS61000-8K	906003	2016/06/18
	System				

3.13. Voltage Dips

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
MOSE	Voltage dips and up generator	3CTEST	VDG-1105G	EC0171014	2016/06/18


3.14. Voltage Short Interruptions

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Voltage dips and up generator	3CTEST	VDG-1105G	EC0171014	2016/06/18

4. POWER LINE CONDUCTED EMISSION MEASUREMENT

4.1. Block Diagram of Test Setup

4.2. Power Line Conducted Emission Limits

Frequency	Limit (dBµV)		
(MHz)	Quasi-peak Level	Average Level	
0.15 ~ 0.50	66.0 ~ 56.0 *	59.0 ~ 46.0 *	
$0.50 \sim 5.00$	56.0	46.0	
5.00 ~ 30.00	60.0	50.0	

Remark: * means decreasing linearly with logarithm of frequency.

4.3. EUT Configuration on Test

The following equipments are installed on Conducted Emission Measurement to meet EN 55014–1 requirements and operating in a manner which tends to maximize its emission characteristics in a ON application.

4.4. Operating Condition of EUT

- 4.4.1. Setup the EUT as shown on Section 4.1.
- 4.4.2. Turn on the power of all equipments.
- 4.4.3. Let the EUT work in measuring mode (ON) and measure it.

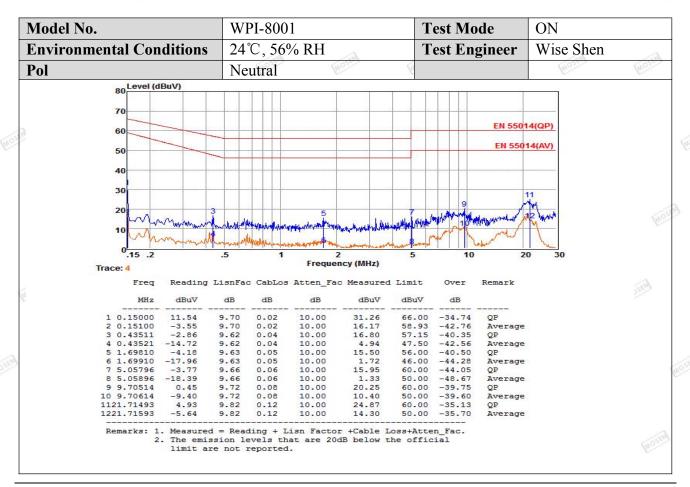
4.5. Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and connected to the AC mains through a Line Impedance Stability Network (L.I.S.N). This provided a 50ohm coupling impedance for the tested equipments. Both sides of AC line are investigated to find out the maximum conducted emission according to the EN 55014-1 regulations during conducted emission measurement.

The bandwidth of the field strength meter is set at 9kHz.

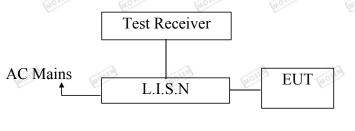
The frequency range from 150kHz to 30MHz is investigated. The scanning waveform, please refer to the next page.

4.6. Test Results


PASS.

The frequency range 150kHz to 30MHz is investigated.

Report No.: MOS1711189677E


Model No.	WPI-80	001		Test	Mode	ON
Environmental Conditions	24°C, 5	6% RH		Test	Engineer	Wise Shen
Pol	Line	SEM	SEN			SEP)
80 Level (dBuV)						(mc
70			-			
20					EN 5	5014(QP)
60	4					
50					EN 5	55014(AV)
						The second secon
40	man Same am 5 am lean	SC MINISTER MANAGEMENT CONTRACTOR	manana ananana an			
30						11
20	<u> </u>	5			a	<u> </u>
		i i	7		white was	1 Ma Trapha
10 10	Home through and	application application of protection	and Printerpolitical	MANAGAMAN	W 110 MANAGEMENT	J Yh
V mound	mary Miller Mary	the state of the s	8	want a	TI TI	C My
0.15 .2	.5	1 2	Manda Later Store of Bally	5	10	20 30
Trace: 2		Frequenc	y (MHz)			20
CONTRACTOR OF THE PARTY OF THE						750
Freq Reading	g LisnFac C	abLos Atten_Fac	Measured	Limit	Over Rema	rk
MHz dBuV	dB .	dB dB	dBuV	dBuV	dB	OSEN
1 0.15000 2.94	9.57 0	.02 10.00	22.53	66.00	-43.47 QP	n
2 0.15100 -2.16		.02 10.00	17.43			rage
3 0.43511 -2.57 4 0.43521 -12.20		.04 10.00 .04 10.00	17.09 7.46		-40.06 QP -40.04 Ave	rage
5 1.77162 -1.99		.05 10.00	17.70		-40.04 Ave	Laye
6 1.77262 -16.43		.05 10.00	3.26			rage
7 3.75939 -7.16		.06 10.00	12.55		-43.45 QP	
8 3.76039 -16.91		.06 10.00	2.80			rage
9 8.86920 -1.56 10 8.87020 -9.40		.08 10.00 .08 10.00	18.21		-41.79 QP -39.63 Ave	rage
1121.14722 4.75		.12 10.00	24.60		-35.40 QP	
1221.14822 -3.66	9.73 0	.12 10.00	16.19	50.00	-33.81 Ave	rage
Remarks: 1. Measur	ed = Readin	g + Lish Factor	r +Cable I	ngg+1++	n Fac	
		ls that are 200				
limit	are not rep	orted.		Marif carlot states	415 P. C.	

5. CLICKS MEASUREMENT

5.1. Block Diagram of Test Setup

(EUT: Qlife Hydrogen Water Generator

5.2. Clicks Measurement Standard and limit

5.2.1. Test Standard

EN 55014-1: 2006+A1: 2009+A2: 2011

5.2.2. Test Limit

According to standard EN 55014-1, if click rate (N) less 5/min and the time of this discontinuous disturbances does not exceed 10ms, then the limit value are omitted.

5.3. EUT Configuration on Test

The configuration of EUT is same as Section 2.1.

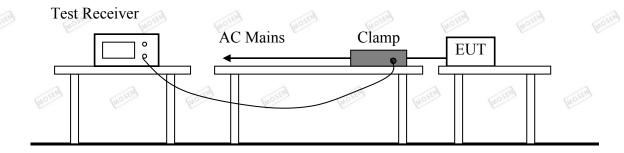
5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT as shown Section 5.1.
- 5.4.2. Turn on the power of all equipments.
 - 5.4.3. After that, let EUT work in test mode (On/Off) and measure it.

5.5. Test Procedure

This test is done when switch operations in thermostatically controlled appliances, automatic program controlled machines and other electrically controlled or operated appliances may generate discontinuous disturbance (Click). The measurement of disturbance shall be performed at the following restricted number of frequencies: 150kHz, 500kHz, 1.4MHz and 30MHz. At each frequency, for appliances which stop automatically, duration of the minimum number of complete programs necessary to produce 40 counted clicks or, where relevant, 40 counted clicks have not been produced, the test is stopped at the end of the program in course. The relevant click rate N. The appliance under test shall be deemed to comply with the limit if not more than a quarter of the number of the counted click registered during the observation time.

5.6. Test Results


PASS.

The click rate (N=1/2.1=0.48<5) of the EUT is less than 5/min and the time of this discontinuous disturbances (\triangle T=4ms<10ms) does not exceed 10ms. According to EN 55014-1, the limit values are omitted.

6. DISTURBANCE POWER MEASUREMENT

6.1. Block Diagram of Test Setup

6.2. Test Standard

EN 55014-1: 2006+A1: 2009+A2: 2011

6.3. Disturbance Power Limits

All emanations from devices or system including any network of conductors and apparatus connected there to, shall not exceed the level of field strengths specified below:

Frequency	Limits dB(pW)			
MHz MHz	Quasi-peak Value	Average Value		
30 ~ 300	45 Increasing Linearly	35 Increasing Linearly		
	with Frequency to 55	with Frequency to 45		

Household and similar appliances		Mo	Inc	Tool	S	Mo	Mossia
2	3	4	5	6	7	8	9
) SEPH MOS	[e]	Rated motor power not exceeding 700 W		Rated motor power above 700 W and not exceeding 1000 W		Rated motor power above 1000 W	
dB (pW) Quasi-peak	dB (pW) Average	dB (pW) Quasi-peak	dB (pW) Average	dB (pW) Quasi-peak	dB (pW) Average	dB (pW) Quasi-pea	dB (pW) Average
	Inc	reasing linearly	y with the fr	equency from:			
0 to 10 dB	-	0 to 10 dB	-	0 to 10 dB	-	0 to 10 dB	-
	applian 2 dB (pW) Quasi-peak	appliances 2 3 dB (pW) dB (pW) Quasi-peak Average Inc.	appliances 2 3 4 Rated motor exceeding dB (pW) dB (pW) dB (pW) Quasi-peak Average Quasi-peak Increasing linearly	appliances 2 3 4 5 Rated motor power not exceeding 700 W dB (pW) dB (pW) dB (pW) dB (pW) Quasi-peak Average Quasi-peak Average Increasing linearly with the fr	appliances 2 3 4 5 6 Rated motor power not exceeding 700 W above 700 W exceeding dB (pW) dB (pW) dB (pW) dB (pW) Quasi-peak Average Quasi-peak Average Quasi-peak Increasing linearly with the frequency from:	appliances 2 3 4 5 6 7 Rated motor power not exceeding 700 W dB (pW) dB (pW) dB (pW) dB (pW) dB (pW) Quasi-peak Average Increasing linearly with the frequency from:	appliances 2 3 4 5 6 7 8 Rated motor power not exceeding 700 W dB (pW) dB (pW) dB (pW) dB (pW) dB (pW) Quasi-peak Average Quasi-peak Average Quasi-peak Average Increasing linearly with the frequency from:

NOTE 1 This table only applies if specified in 4.1.2.3.2.

NOTE 2 The measured result at a particular frequency shall be less than the relevant limit minus the corresponding margin (at that frequency).

6.4. EUT Configuration on Test

The EN 55014-1 Regulations test method must be used to find the maximum emission during radiated emission measurement. The configuration of the EUT is the same as used in conducted emission measurement.

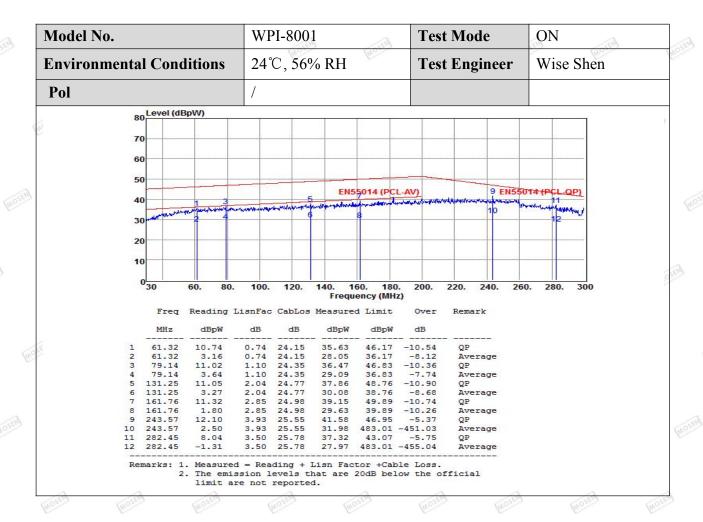
6.5. Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 4.4, except the test set up replaced as Section 6.1.

6.6. Test Procedure

The EUT is placed on the plane 0.8m high above the ground by insulating support and away from other metallic surface at least 0.4m. It is connected to the power mains through an extension cord of 6m min. The absorber clamp clamps the cord and moves from the far end to the EUT to measure the disturbing energy emitted from the cord.

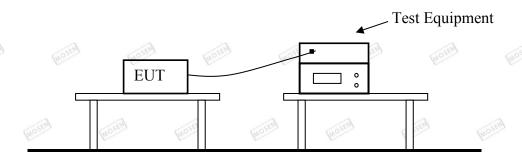
The bandwidth of the field strength meter is set at 120kHz.


All the test results are listed in Section 6.7.

6.7. Test Results

PASS.

The frequency spectrum from 30 MHz to 300 MHz is investigated.



7. HARMONIC CURRENT EMISSION MEASUREMENT

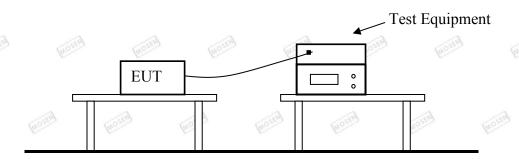
7.1. Block Diagram of Test Setup

7.2. Test Standard

EN 61000-3-2: 2014

7.3. Operation Condition of EUT

Same as Section 4.4 except the test setup replaced as Section 7.1.


7.4. Test Results

PASS.

8. VOLTAGE FLUCTUATION AND FLICKER MEASUREMENT

8.1. Block Diagram of Test Setup

8.2. Test Standard

EN 61000-3-3: 2013

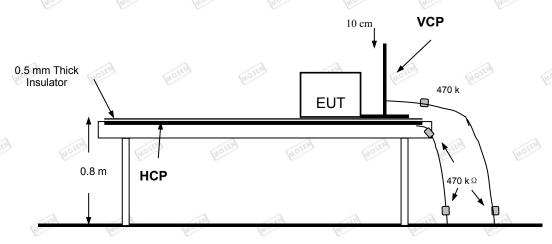
8.3. Operation Condition of EUT

- 8.3.1. Setup the EUT as shown Section 8.1.
- 8.3.2. Turn on the power of all equipments.
- 8.3.3. Let EUT work in test mode (On/Off) and measure it.

8.4. Test Results

PASS.

Please refer to the next page.



Model No.	WPI-8001	MOSEN MOSEN T	est Engineer W	ise Shen
verall Result:	Notes:			
B400	Measurement meth	od - Voltage		
PASS				
	*			
	Pst	dc (%)	dmax (%)	d(t) > 3.3%(ms)
Limit	Pst 1.000	dc (%) 3.300	dmax (%) 4.000	d(t) > 3.3%(ms) 500

9. ELECTROSTATIC DISCHARGE IMMUNITY TEST

9.1. Block Diagram of Test Setup

Ground

9.2. Test Standard

EN 55014-2: 2015

(EN 61000-4-2: 2009, Severity Level: 3 / Air Discharge: ± 8KV, Level: 2 /

Contact Discharge: ±4KV)

9.3. Severity Levels and Performance Criterion

9.3.1. Severity level

Level	Test Voltage	Test Voltage			
	Contact Discharge (KV)	Air Discharge (KV)			
1.	±2	±2			
2. most	±4 (100 st	±4 (10°5°			
3.	±6	±8			
4.	±8	±15			
X	Special	Special			

9.3.2. Performance criterion: **B**

9.4. EUT Configuration on Test

The configuration of EUT are listed in Section 4.3.

9.5. Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 4.4 except the test set up replaced by Section 9.1.

9.6. Test Procedure

9.6.1. Air Discharge

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

9.6.2. Contact Discharge

All the procedure shall be same as Section 9.6.1. except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

9.6.3. Indirect Discharge For Horizontal Coupling Plane

At least 10 single discharges (in the most sensitive polarity) shall be applied at the front edge of each HCP opposite the center point of each unit (if applicable) of the EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

9.6.4. Indirect Discharge For Vertical Coupling Plane

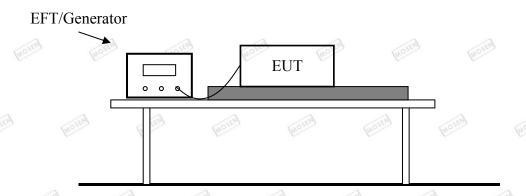
At least 10 single discharges (in the most sensitive polarity) shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

9.7. Test Results

PASS.

Please refer to the next page.

Wa.	May May May	1413	Way Way					
Electrostatic Discharge Test Results								
Standard	☐ IEC 61000-4-2 ☐ EN 61000-4-2							
Applicant	Micro Research Institute Inc.	Mos	(Mos.					
EUT	Qlife Hydrogen Water Generator	Temperature	23°C					
M/N	WPI-8001	Humidity	51%					
Criterion	В	Pressure	1021mbar					
Test Mode	ON	Test Engineer	Wise Shen					



		Air	Discharge				
		Test Levels	Discharge		Resu	ılts	
Test Points	± 2KV	± 4KV	± 8KV	Pass	Fail	Perform Crite	nance
Front							$\boxtimes \mathbf{B}$
Back			\boxtimes			\Box A	\boxtimes B
Left		\boxtimes	\boxtimes	\boxtimes		\Box A	$\boxtimes \mathbf{B}$
Right	\boxtimes	\boxtimes				\Box A	\boxtimes B
Тор	\boxtimes	\boxtimes				\Box A	$\boxtimes \mathbf{B}$
Bottom	\boxtimes	\boxtimes				\Box A	$\boxtimes \mathbf{B}$
		Conta	ct Dischar	·ge			
Test Levels Results							
Test Points	± 2 kV	±4 kV		Pass	Fail	Perform Criterio	
Front				\boxtimes		\Box A	$\boxtimes \mathbf{B}$
Back				\boxtimes		\square A	$\boxtimes \mathbf{B}$
Left						$\square \mathbf{A}$	\boxtimes B
Right				\boxtimes		$\square \mathbf{A}$	$\boxtimes \mathbf{B}$
Тор				\boxtimes		$\square \mathbf{A}$	$\boxtimes B$
Bottom						$\square \mathbf{A}$	$\boxtimes \mathbf{B}$
	Di	scharge To	Horizontal	Coupling	Plane		
	Test I	Levels			Results		
Side of EUT	± 2 KV	± 4 KV	7	Pass	Fail Performance Criterion		
Front		\boxtimes		\boxtimes		\Box A	\boxtimes B
Back				\boxtimes		\Box A	\boxtimes B
Left	\boxtimes	\boxtimes				\Box A	\boxtimes B
Right	\boxtimes	\boxtimes		\boxtimes		\Box A	\boxtimes B
	Di	scharge To	Vertical C	oupling Pl	ane		
	Test	Levels			Results		
Side of EUT	± 2 kV	± 4 kV		Pass	Fail Performa Criterion		
Front						\Box A	\boxtimes B
Back						\Box A	$\boxtimes \mathbf{B}$
Left							\boxtimes B
Right				\boxtimes			$\boxtimes B$

10. ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST

10.1. Block Diagram of Test Setup

10.2. Test Standard

EN 55014-2: 2015 (EN 61000-4-4: 2004+A1: 2010, Severity Level: Level 2: 1KV)

10.3. Severity Levels and Performance Criterion

10.3.1. Severity level

Open Circuit Output Test Voltage ± 10%							
Level	On Power Supply	On I/O (Input/Output)					
	Lines	Signal data and control lines					
IMOSEN 1.	0.50KV	0.25KV					
2.	1.00KV	0.50KV					
3.	2.00KV	1.00KV					
4.	4.00KV	2.00KV					
X _M OSEN	Special Special	Special					

10.3.2. Performance criterion: **B**

10.4. EUT Configuration on Test

The configuration of EUT are listed in Section 4.3.

10.5. Operating Condition of EUT

- 10.5.1. Setup the EUT as shown in Section 10.1.
- 10.5.2. Turn on the power of all equipments.
- 10.5.3. Let the EUT work in test mode (ON) and measure it.

10.6. Test Procedure

The EUT is put on the table which is 0.8 meter high above the ground. This reference ground plane shall project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5m.

10.6.1. For input and output AC power ports:

The EUT is connected to the power mains by using a coupling device which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 mins.

10.6.2. For signal lines and control lines ports:

No I/O ports. It's unnecessary to test.

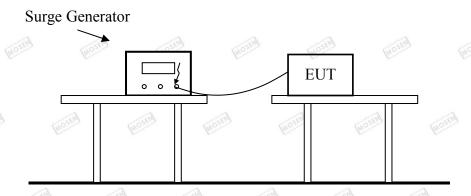
10.6.3. For DC output line ports:

No DC output ports. It's unnecessary to test.

10.7. Test Results

PASS.

Please refer to the following page.


Electrical Fast Transient/Burst Test Results								
Standard □ IEC 61000-4-4 ☑ EN 61000-4-4								
Applicant Micro Research Institute Inc.								
EUT	Qlife Hydrogen Water Generator	Temperature	23°C					
M/N	WPI-8001	Humidity	51%					
Test Mode	ON	Criterion	В					
Test Engineer	Wise Shen							

Line	Test Voltage	Result (+)	Result (-)	
Osem L Mosem	1KV still 100 still	PASS	PASS PASS	
N	1KV	PASS	PASS	
PE	1KV (SER)	PASS	PASS	
L-N	1KV	PASS	PASS	
L-PE	1KV	PASS	PASS	
N-PE	1KV	PASS	PASS	
L-N-PE	1KV	PASS	PASS	
Signal Line				
I/O Cable	5EM 3EM 3EM	3EM 3EM	A SEM	

11. SURGE IMMUNITY TEST

11.1. Block Diagram of Test Setup

11.2. Test Standard

EN 55014-2: 2015

(EN 61000-4-5: 2014, Severity Level: Level 2, Line to Line: 1.0KV; Level 3 Line

to Ground: 2.0KV)

11.3. Severity Levels and Performance Criterion

11.3.1. Severity level

Seve	Severity Level		Open-Circuit Test Voltage (KV)	
fu.	1	/w	0.5	
	2		1.0	
	3		2.0	
SEN	4		551 4.0 SSM	
(mc	X		Special	

11.3.2. Performance criterion: **B**

11.4. EUT Configuration on Test

The configuration of EUT are listed in Section 4.3.

11.5. Operating Condition of EUT

- 11.5.1. Setup the EUT as shown in Section 11.1.
- 11.5.2. Turn on the power of all equipments.
- 11.5.3. Let the EUT work in test mode (ON) and measure it.

11.6. Test Procedure

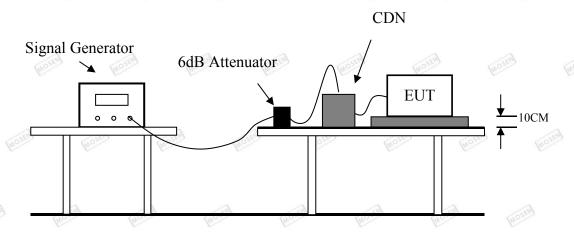
- 11.6.1. Set up the EUT and test generator as shown on Section 11.1.
- 11.6.2. For line to line coupling mode, provide a 1.0 KV 1.2/50us voltage surge (at open-circuit condition) and 8/20us current surge to EUT selected points.
- 11.6.3. For line to earth coupling mode, provide a 2.0KV 1.2/50us voltage surge (at open-circuit condition) and 8/20us current surge to EUT selected points.
- 11.6.4. At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are conducted during test
- 11.6.5. Different phase angles are done individually.
- 11.6.6. Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

11.7. Test Results

PASS.

Please refer to the following pages

Surge Immunity Test Result								
Standard □ IEC 61000-4-5 □ EN 61000-4-5								
Applicant	Micro Research Institute Inc.	Mosen	MOSEN MOSEN					
EUT	Qlife Hydrogen Water Generator	Temperature	23℃					
M/N	WPI-8001	Humidity	51% _(MOSE)					
Test Mode	ON	Criterion	В					
Test Engineer	Wise Shen		1105814 1105814					


Location	Polarity	Phase Angle	Number of Pulse	Pulse Voltage (KV)	Result
SEN) MOSENY	MOSEM)	0°	Mosern 2 Mosern	mosen .0	PASS
	+	90°	5	1.0	PASS
	+	180°	5	1.0	PASS
	+	270°	5	1.0	PASS
L-N	_ (MO	0° (40)	5	1.0 Mosts	PASS
	-	90°	5	1.0	PASS
	-	180°	5	1.0	PASS
[43]	- EM	270°	5	1.0	PASS
[WO.	- Finos	$0_{\rm o}$	5 mo	2.0	PASS
	+	90°	5	2.0	PASS
	+	180°	5	2.0	PASS
L-PE	MOSEN+	270°	MOSEM 5 MOSEM	mose 2.0	PASS
L-rc	-	0°	5	2.0	PASS
	-	90°	5	2.0	PASS
	a -	180°	5	2.0	PASS
	- Mossi	270°	(mo)	2.0	PASS
	+	0°	5	2.0	PASS
	+	90°	5	2.0	PASS
	EEN	180°	SEEN 5 SEEN	2.0	PASS
	The T	270°	5 moss	2.0	PASS
N-PE	-	0°	5	2.0	PASS
	-	90°	5	2.0	PASS
	OSEM -	380°	5,581	2.0	PASS
In	- 1	270°	5	2.0	PASS
Signal Line					

Г						0.0110	
	Note						
	Note	MOSEM					MOSE
			1771		120	~	

12. INJECTED CURRENTS SUSCEPTIBILITY TEST

12.1. Block Diagram of Test Setup

12.2. Test Standard

EN 55014-2: 2015

(EN 61000-4-6: 2014, Severity Level: 3V (rms), (0.15MHz ~ 230MHz))

12.3. Severity Levels and Performance Criterion

12.3.1. Severity level

Lev	vel	Field Strength (V)			100			
	1.				1			
MOSEN	2.	NOSEN	MOSEN	MOSEN	3	MOSEN	MOSEM	
	3.				10			
	X	Special						

12.3.2. Performance criterion: A

12.4. EUT Configuration on Test

The configuration of EUT are listed in Section 4.3.

12.5. Operating Condition of EUT

- 12.5.1. Setup the EUT as shown in Section 12.1.
- 12.5.2. Turn on the power of all equipments.
- 12.5.3. Let the EUT work in test mode (ON) and measure it.

12.6. Test Procedure

- 12.6.1. Set up the EUT, CDN and test generators as shown on Section 12.1.
- 12.6.2. Let the EUT work in test mode and measure it.
- 12.6.3. The EUT are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).
- 12.6.4. The disturbance signal described below is injected to EUT through CDN.
- 12.6.5. The EUT operates within its operational mode(s) under intended climatic conditions after power on.
- 12.6.6. The frequency range is swept from 150kHz to 230MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1kHz sine wave.
- 12.6.7. The rate of sweep shall not exceed 1.5*10⁻³ decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
- 12.6.8. Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.

12.7. Test Results PASS.

Please refer to the following pages

Injected Currents Susceptibility Test Results					
Standard	☐ IEC 61000-4-6 ☐ EN 61000-4-6	MOSEN	MOSEM		
Applicant	Micro Research Institute Inc.				
EUT	Qlife Hydrogen Water Generator	Temperature	23℃		
M/N	WPI-8001	Humidity	51%		
Test Mode	ON	Criterion	A		
Test Engineer	Wise Shen		1613		

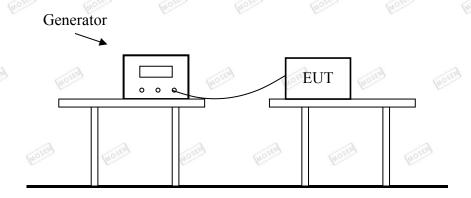
Frequency Range (MHz)	Injected Position	, ,		Result	
0.15 ~ 230	AC Mains	Mosein 3V Mosein	MOA (M	PASS	

Remark:

1. Modulation Signal:1kHz 80% AM

2. Measurement Equipment:

Simulator: CIT-10 (FRANKONIA)


CDN : □CDN-M2 (FRANKONIA)

□CDN-M3 (FRANKONIA)

13. VOLTAGE DIPS AND INTERRUPTIONS TEST

13.1. Block Diagram of Test Setup

13.2. Test Standard

EN 55014-2: 2015 (EN 61000-4-11: 2004)

13.3. Severity Levels and Performance Criterion

13.3.1. Severity level

Test Level %UT	Voltage dip and short interruptions %UT	Duration (in period)		
0	100	0.5	0.5	
ed 40 mosel	60 most	10 NO SEP	12 seed	
70	30	25	30	
SEN	Strill Strill	Stal	luzz	

13.3.2. Performance criterion: **C&C**

13.4. EUT Configuration on Test

The configuration of EUT are listed in Section 4.3.

13.5. Operating Condition of EUT

- 13.5.1. Setup the EUT as shown in Section 13.1.
- 13.5.2. Turn on the power of all equipments.
- 13.5.3. Let the EUT work in test mode (ON) and measure it.

13.6. Test Procedure

- 13.6.1. Set up the EUT and test generator as shown on Section 13.1.
- 13.6.2. The interruptions is introduced at selected phase angles with specified duration.
- 13.6.3. Record any degradation of performance.

13.7. Test Result

PASS.

Please refer to the following page.

Voltage Dips And Interruptions Test Results					
Standard	☐ IEC 61000-4-11 ☐ EN 61000-4-11	(FI)	Mas Mas		
Applicant	Micro Research Institute Inc.	Mo	(mo)		
EUT	Qlife Hydrogen Water Generator	Temperature	23℃		
M/N	WPI-8001 MOSEN MOSEN	Humidity	51%		
Test Mode	ON	Criterion	C&C		
Test Engineer	Wise Shen	E	MOSEM MOSEM		

Report No.:MOS1711189677E

Test Level	Voltage Dips & Short Interruptions	Duration (in periods)		Criterion	Result
% U _T	% U _T	50Hz	60Hz		
40	60	10P	12P	C	PASS
70	30	25P	30P	С	PASS
0 Moses	100	0.5P	0.5P	r C	PASS

14. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Fig. 1 Model: WPI-8001

Fig. 2 Model:WPI-8001

-----THE END OF TEST REPORT-----